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Abstract. Non-stationary and non-linear dynamic time se-
ries analysis tools are applied to multi-annual eddy covari-
ance and micrometeorological data from 44 FLUXNET sites
to derive a light use efficiency model for gross primary pro-
duction on a daily basis. The extracted typical behaviour of
the canopies in response to meteorological forcing leads to
a model formulation allowing for a variable influence of the
environmental drivers temperature and moisture availability
modulating the light use efficiency. Thereby, the model is
applicable to a broad range of vegetation types and climatic
conditions. The proposed model explains large proportions
of the variation of the gross carbon uptake at the study sites
while the optimized set of six parameters is well defined.
With the parameters showing explainable and meaningful re-
lations to site-specific environmental conditions, the model
has the potential to serve as basis for general regionalization
strategies for large scale carbon flux predictions.

1 Introduction

The atmosphere and the terrestrial biosphere are tightly cou-
pled through the exchange of energy and matter (Monteith
and Unsworth, 2008). A central component of this coupling
is the assimilation and release of CO2 by photosynthesis and
respiration; these opposed fluxes modulate substantially the
global carbon cycle (Schimel et al., 2001). The rising CO2
concentration in the atmosphere and the associated chang-
ing climate factors have implications on the functioning of
ecosystems and hence provoke a feedback on the carbon cy-
cle in turn (Cox et al., 2000).
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Consequently, quantifying the global carbon balance un-
der current conditions and predicting its characteristics in a
future environment with enhanced atmospheric CO2 concen-
trations implies the quantification of CO2 uptake and res-
piration rates of ecosystem as well as descriptions of their
main drivers (Cramer et al., 2001). With plants trading wa-
ter vapour with CO2, the CO2 assimilation additionally has
effects on the hydrologic cycle, another global key cycle in a
changing environment (Law et al., 2002; Jackson et al., 2005;
Barr et al., 2007).

The biochemical and biophysical processes of photo-
synthesis and respiration as principle processes in ecosys-
tems have been studied extensively under laboratory condi-
tions and are well understood on cell, leaf and plant scales
(Farquhar et al., 1980; Stitt, 2006). Sophisticated process
models of carbon fluxes formulated at these scales are in-
corporated into soil-vegetation-atmosphere transfer model
schemes (Collatz et al., 1991), which have more and more
often found their way in GCMs (global circulation models,
Cox et al., 1998; Sellers et al., 1997). However, the up-
scaling in time and space from a cell, leaf and plant scale
to regional dimensions is not straightforward (Leuning et al.,
1995). Furthermore, these complex models need many de-
tailed input parameters which are often not measurable or
not available at canopy or regional scales, a fact rendering
model predictions uncertain (Wang et al., 2001; Franks et al.,
1997; Schulz et al., 2001; Beven and Freer, 2001). An al-
ternative strategy to circumvent some of these difficulties is
the specific development of process models for regional scale
and inter-seasonal or inter-annual purposes. Biosphere mod-
els like Biome-BGC (Running and Hunt, 1993) or BETHY
(Knorr, 2000) with daily time steps were designed with the
compromise between mechanistic details and simplified pro-
cess description. Still, these models are subject to uncertainty
in process parameters; studies have revealed that even these
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models developed in a process and scale integrating manner
show an imbalance between the input data requirements and
the actual information content of measurement data which
enhances the forecast uncertainty significantly (Knorr and
Heimann, 2001a,b; Zaehle et al., 2005; White et al., 2000).
A frequently tested possible solution for this dilemma are
data assimilation schemes to further constrain these mod-
els (Kaminski et al., 2002; Knorr and Kattge, 2005; Rayner
et al., 2005; Williams et al., 2004). This tactic has been
made feasible by a growing number of ecosystem observa-
tion networks such as FLUXNET, satellite driven programs
from ESA or NASA and integrative platforms like NESDIS
(National Environmental Satellite, Data and Information Ser-
vice).

Some studies go even further to overcome the restrictions
of lacking information content in the available data to con-
strain model processes and to make the quantification of
gross primary productivity better applicable for larger scales
and chose very parsimonious model structures without the
implementation of explicit physiological processes occurring
at cell and leaf scale. Such models treat canopies as func-
tional units aggregating and averaging processes over space
and time. A very popular approach uses the concept of light
use efficiency. The light use efficiency,ε, represents the ra-
tio of carbon biomass production per unit of absorbed light
(Watson, 1947; Monteith, 1972; Monteith and Unsworth,
2008). Various studies have proven the light use efficiency
ε to be quite constant over the day, a fact which renders the
light use efficiency concept suitable for daily-step models
(Ruimy et al., 1995; Rosati and Dejong, 2003; Sims et al.,
2005). The light use efficiency parameter has been imple-
mented in ecosystem models as a constant (Landsberg and
Waring, 1997; Veroustraete et al., 2002) or as time-varying
parameter. In the latter case, global or biome-specific max-
imum or potential light use efficiency is modified by one or
more restricting environmental factors such as temperature
and vapour pressure deficit with predefined functions (Potter
et al., 1993; McMurtrie et al., 1994; Prince et al., 1995; Ver-
oustraete et al., 2002; Xiao et al., 2004a; Yuan et al., 2007;
Mäkel̈a et al., 2008). The LUE approach has been used as
a stand-alone application (Yuan et al., 2007; Mäkel̈a et al.,
2008) as well as integrated in ecosystem models (Coops
et al., 2005), it has been driven with ground measurement
data as well as combined with remote sensing data (Potter
et al., 1993; Law and Waring, 1994; Prince et al., 1995). The
MODIS-GPP algorithm (Running et al., 1999; Zhao et al.,
2005) is principally based on the light use efficiency ap-
proach, too.

But despite numerous models proposed, many questions
have remained unanswered and primary production mod-
elling on landscape scale is still “an active area of re-
search” (Hilker et al., 2008, p.418).Garbulsky et al.(2010)
states that the relationships between the light use efficiency
and its climatological drivers for different biomes are still
not clarified, and, furthermore, “a substantial number of

those relationships were derived from models rather than us-
ing evidence from actual measurements” (Garbulsky et al.,
2010, p.254). The usage of fixed, biome specific maxi-
mum/potential light use efficiencies (such as in the MOIDS
GPP algorithm) or even global constants (such as in the
model proposed byYuan et al., 2007) “is far from optimum
and is the possible cause of the low performance of the pho-
tosynthetic uptake models” (Garbulsky et al., 2010, p.255).
In this study, we address the discussed drawbacks of existing
approaches and explore the benefits of applying a data-based
modeling approach, which leads to a parsimonious model,
which is subsequently site-specifically parametrized.

Basic relationships like the light use efficiency are well
suited as a starting point for model identification proce-
dures in a top-down fashion. Such methodologies try to
develop models specifically at the scale of interest begin-
ning with the most robust functional relationships which are
iteratively refined according to data analysis results. No
a priori assumptions beside very basic functional relation-
ships are made. In this way, observed data is given more
weight in the model building process than in purely mecha-
nistic based model building approaches without disregard-
ing the robust mechanistic processes. This leads to hy-
brid stochastic-mechanistic models with not more complex-
ity than can be supported by the observation data information
content. Suitable tools for this methodology are – amongst
others – non-parametric state-dependent parameter estima-
tion (SDP) and dynamic linear regression (DLR) based on
Kalman filtering and smoothing techniques. They allow for
the time and state dependent evolution of parameters to be es-
timated directly from time series data (Young and Pedegral,
1999; Young et al., 2001) and have shown to be capable of
capturing seasonal behaviour of ecosystems (Young, 1998;
Schulz and Jarvis, 2004; Jarvis et al., 2004; Gamier, 2006;
Taylor et al., 2007).

Apparently, the described approach relies on the existence
of suitable data sets. Indeed, the growing number of mi-
crometeorological and flux measurements in the FLUXNET
framework makes such data-led model identification proce-
dures more feasible than ever. FLUXNET (Baldocchi et al.,
2001) is a global research network of currently over 400 eddy
covariance towers which measure the exchange of energy,
water vapour and CO2 along with important micrometeoro-
logical variables. This long-term measurement effort pro-
vides valuable insights into the functioning of ecosystems
(Friend et al., 2007).

In what follows we use SDP and DLR to derive simple but
– in contrast to many models published earlier – broadly ap-
plicable canopy-scale model structures for GPP on the basis
of the light use efficiency concept. SDP is employed as diag-
nostic tool to identify the dominant behaviour of the light use
efficiency in relation to the drivers under consideration in an
objective manner. The noise inherent to the data is explicitly
addressed. Therefore it is superior to a mere plotting of the
light use efficiency (as coefficient of the absorbed radiation
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and the gross primary production) vs. the potential drivers.
The such derived relationships form the basis for the subse-
quent formulation of the subfunctions modifying the maxi-
mum light use efficiency. Such an approach has already been
applied byJarvis et al.(2004) for two deciduous forest sites.
They extracted a sigmoidal functional form for the light use
efficiency depending on the lagged soil temperature. Here,
we want to enhance this study to more sites and different
vegetation and climate classes. As will be seen, this makes
it necessary to refine the found model structures byJarvis
et al. (2004) – in the following called the “Jarvis-model” –
and to account for additionally forcing moisture availability
proxies. The model parameters are calibrated site specifi-
cally following the assumption that there is no single set of
parameters that describes the behaviour of sites across cli-
mate classes and vegetation types. Finally, found parameters
are tested for patterns which relate themselves to site spe-
cific characteristics serving – as a first step – the final aim to
regionalize the model parameters.

2 Data and methods

2.1 Micro-meteorological data

44 forest and grassland FLUXNET sites in climate zones
reaching from boreal to semi-arid were chosen as data base
for this study (Table1). The selection criterion was the
existence of at least three measurement years and no mea-
surement gaps longer than three weeks with respect to the
core variables (CO2, radiation and temperature). The se-
lected sites are located in North America and Europe com-
prising 12 coniferous forest sites, 18 deciduous, 5 mixed,
2 evergreen forests as well as 7 grasslands. Table1 summa-
rizes their characteristics. The data were downloaded from
the web gateways of the regional FLUXNET sub-networks
AmeriFlux and CarboEurope as hourly and half-hourly data.
As there is still an ongoing debate on whether and how to
apply friction velocity filtering of measured surface fluxes
(Falk et al., 2005; Papale et al., 2006; Acevedo et al., 2009),
we follow Jarvis et al.(2004) in using the complete data-set.
Being aware of the potential of thereby introducing a slight
bias (Papale et al., 2006), this does not limit our derived re-
sults. The downloaded data including energy and carbon
fluxes along with meteorological variables have measure-
ment gaps which were filled in the following way: Short gaps
up to three hours of meteorological variables are linearly in-
terpolated. The average values of the respective values at the
time of day in a 14-day moving time window around the gap
(Falge et al., 2001) serve to fill gaps of medium length up to
4 days. Even larger gaps are replaced with the respective val-
ues averaged over the whole time series available. Missing
data in the time series ofFN are replenished on the hourly
time scale with the multidimensional semi-parametric spline
interpolation scheme explained inStauch and Jarvis(2006).

This method forms a multi-dimensional spline-hypersurface
through the measured data in a space spanned by the tem-
perature, radiation and time. Thereby, the method is sim-
ilar to a three-dimensional look-up table approach which
avoids a binning of the data, or it can be seen as “a non-
linear regression without a prescribed functional form” (De-
sai et al., 2008, p.823). The methodology compares well to
other gap-filling techniques for eddy covariance net carbon
fluxes (Moffat et al., 2007). The gap-filled net flux was fi-
nally split up into respiration and the gross flux component,
FG, by using the hypersurface through the night-time val-
ues to determine the respiration component. The gross flux
of carbon uptake (FG) was afterwards calculated as differ-
ence of net flux and respiration (Desai et al., 2008). Finally,
all time series of the meteorological and flux variables were
aggregated to time series with daily values: Climatological
variables were averaged, fluxes summed up. These time se-
ries with daily time steps are used throughout the following
study.

2.2 MODIS LAI/FPAR product

The absorbed photosynthetically active radiation (APAR) is a
core input variable of typical light use efficiency models and
as such used in this study, too. It is the product of the incident
photosynthetically active radiation (PAR) and the fraction of
photosynthetically active radiation absorbed by the plants
(FPAR). The latter variable was downloaded as MODIS
LAI/FPAR Land Products subsetOak Ridge National Labo-
ratory Distributed Active Archive Center(ORNL DAAC) for
each study site. These MOD15A2 and MYD15A2 subsets
provide 8-day values in a grid of 7× 7 pixels with a size of
1 km2 centred on the tower. MOD15A2 and MYD15A2 are
produced with data from the satellites Terra and Aqua and are
retrieved by inverse radiative transfer modeling (Knyazikhin
et al., 1999). In this study, the products from both satellites
were merged into one dataset according toYang et al.(2006).
For forests, each of the 49 pixels with the same land class as
the study site according to the MODIS product MOD12Q1
is taken into account for this study; for grasslands, only the
3× 3 pixels around the tower are considered. Taking more
than the center pixel into account is a typical approach (Le-
uning et al., 2005; Xiao et al., 2008). If neither Terra nor
Aqua delivered a value with the main algorithm the mean of
all available years at the considered day of year was taken
instead. To calculate the average of the several pixels at each
time step, the values were weighted according to their in-
verse difference to the multi-annual mean of FPAR values for
the whole subset at the particular day over all measurement
years, since the values of the neighbouring pixels often dif-
fer significantly from each other with sometimes unrealistic
values. Due to this noisiness of the MODIS LAI/FPAR time
series (Gu et al., 2006b; Gao et al., 2008; Horn and Schulz,
2010) and the need to temporally disaggregate the time se-
ries composed of 8-day-values into a daily time steps, the
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Table 1. Name, vegetation (veg.) and climate class, measurement years utilized in this study, and reference for the study sites. Koeppen-
Geiger-climate classes: steppe climate (BS), temperate (C), continental (D); summer dry (s), fully humid (f); hot (h), cold in winter (k); hot
summer (a), warm summer (b), cool summer (c), cold winter (d); vegetation types: deciduous broadleaf forest (DBF), mixed (MF), evergreen
needleleaf (ENF), evergreen broadleaf (EBF), grass (G).

Name veg. climate year reference

Black Hills (US-Blk) ENF Dfa 2004–2006 Wilson and Meyers(2007)
Blodgett (US-Blo) ENF Csb 2002–2006 Goldstein et al.(2000)
Boreas (CA-Man) ENF Dfc 1995–2005 Goulden et al.(2006)
Donaldson (US-SP3) ENF Cfa 2001–2004 Gholz and Clark(2002)
Flakaliden (SE-Fla) ENF Dfc 2000-2002 Wallin et al.(2001)
GLEES (US-GLE) ENF Dfc 2006–2008 Massman and Clement(2005)
Griffin (UK-Gri) ENF Cfb 1998, 2000–2001 Clement et al.(2003)
Hyytiälä (Fl-Hyy) ENF Dfc 1997–2006 Suni et al.(2003)
Le Bray (FR-LBr) ENF Cfb 2001–2003 Berbigier et al.(2001)
Loobos (NL-Loo) ENF Cfb 1997–2006 Dolman et al.(2002)
Metolius Interm. (US-Me2) ENF Csb 2002–2005, 2007Anthoni et al.(2002)
Metolius Young (US-Me5) ENF Csb 2002–2002 Anthoni et al.(2002)
Niwot Ridge (US-NR1) ENF Dfc 1999–2006 Sacks et al.(2006)
Norunda (SE-Nor) ENF Dfb 1996–2005 Lagergren et al.(2005)
Tharandt (DE-Tha) ENF Dfb 1997–2003 Grünwald and Bernhofer(2007)
Wetzstein (DE-Wet) ENF Dfb 2002–2008 Rebmann et al.(2010)
Wind River (US-Wrc) ENF Csb 1999–2004, 2006Shaw et al.(2004)
Yatir (IL-Yat) ENF BSh 2001–2002, 2005 Maseyk et al.(2008)
Bartlett (US-Bar) DBF Dfc 2004–2007 Jenkins et al.(2007)
Duke Hardwood (US-Dk2) DBF Cfa 2001–2005 Stoy et al.(2005, 2007)
Hainich (DE-Hai) DBF Dfb 2000–2007 Mund et al.(2010)
Hesse (FR-Hes) DBF Cfb 1997–2007 Granier et al.(2008)
MMSF (US-MMS) DBF Dfa 1999-2006 Schmid et al.(2000)
Missouri Ozark (US-MOz) DBF Dfa 2005–2008 Gu et al.(2006a, 2007)
Roccarespampani (IT-Ro1) DBF Csa 2001–2003 Keenan et al.(2009)
Soroe (DK-Sor) DBF Cfb 1997–2005 Pilegaard et al.(2003)
Sylvania Wilderness (US-Syv) DBF Dfb 2002–2004 Desai et al.(2005)
UMBS (US-UMB) DBF Dfb 1999–2003 Gough et al.(2008)
WalkerBranch (US-WBW) DBF Cfa 1995–1999 Wilson and Meyers(2007)
Willow Creek (US-WCr) DBF Dfb 2000–2006 Cook et al.(2004)
Castelporziano (IT-Cpz) EBF Csa 2002–2003 Seufert et al.(1997)
Puechabon (FR-Pue) EBF Csb 2001–2008 Allard et al.(2008)
Audubon (US-Aud) G BSh 2004–2008 Wilson and Meyers(2007)
Goodwin Creek (US-Goo) G Cfa 2004–2006 Wilson and Meyers(2007)
Lethbridge (CA-Let) G Dfb 1999–2004 Flanagan(2009)
Neustift (AT-Neu) G Dfb 2002, 2005–2007 Wohlfahrt et al.(2008)
Oensingen (CH-Oe1) G Dfb 2002–2007 Ammann et al.(2009)
Peck (US-FPe) G BSk 2000–2006 Wilson and Meyers(2007)
Vaira Ranch (US-Var) G Csa 2001–2007 Ma et al.(2007)
Brasshaat (BE-Bra) MF Cfb 1997–2008 Carrara et al.(2003, 2004)
Duke (US-Dk3) MF Cfa 1999–2002 Siqueira et al.(2006)
Harvard (US-Ha1) MF Dfb 1992–2007 Urbanski et al.(2007)
Howland (US-Ho3) MF Dfb 1996–2004 Hollinger et al.(2004)
Vielsalm (BE-Vie) MF Cfb 2000–2008 Aubinet et al.(2001)

final FPAR time series was retrieved by a cubic smoothing
spline fitted through all data points as described inHorn and
Schulz(2010). APAR was finally calculated as product of
PAR measured at the FLUXNET sites and FPAR.

2.3 Data analysis and pre-processing methods

The study ofJarvis et al.(2004) proved non-stationary re-
gression frameworks such as the “Captain Toolbox” for
Matlab® (Pedregal et al., 2007) to be perfectly suited to
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extract functional descriptions for the typical seasonal evo-
lution of the respiration and gross carbon flux (FG) from
eddy covariance measurements as part of a model building
process. These time series do not only depend on environ-
mental conditions in a complex manner, but they are also
afflicted with noise. This can hinder a simple signal ex-
traction directly from the time series without filtering and
smoothing techniques. Therefore, two of the toolbox’s pow-
erful tools, which are based on recursive Kalman filtering and
fixed interval smoothing techniques, were employed both in
the aforementioned study and are used in this study, too, as
diagnostic tools: dynamic linear regression, DLR, and espe-
cially state dependent parameter analysis, SDP. They allow
the extraction of systematic trends in the variation of non-
constant model parameters directly from measured time se-
ries and, hence, enable the objective identification of non-
stationarities or state dependencies characterizing these time-
varying parameters (Jarvis et al., 2004).

In particular, the underlying regression type in case of
DLR is of the form

y(t) =

n∑
i=1

ci(t) · xi(t) + ζ(t) (1)

wherey is the dependent variable,xi(t) are the regressors,ci

are time (t) dependent regression parameters andζ(t) is the
regression error series assumed to be a serially uncorrelated
white noise sequence with a zero mean (Young and Pedegral,
1999). i is the increment running from 1 to the number of
regressors,n. DLR extracts the incremental temporal vari-
ations inc assuming the parameters to gradually vary with
time. The stochastic random walk process follows a white
noise sequence (η(t)) with a zero mean (Jarvis et al., 2004).
Each sampling instant depends on the data in its vicinity. A
Gaussian weighting function determines the influence of the
neighboring data samples on the one currently considered.
The ”bandwidth” of this Gaussian window function centered
at thei-th sample instant and declining at either side is deter-
mined by the noise-variance ratio (NVR). The NVR is cal-
culated as ratio of the variances ofη(t) andζ(t) (Schulz and
Jarvis, 2004). A NVR of zero corresponds to constant param-
eter values. Large NVR values imply a sharp decrease of the
weighting function with increasing distance from the con-
sidered sample, resulting in rapid changes of the estimated
parameter. By using a very large NVR an almost perfect
model fit can be achieved; then, however, the estimated SDP
model is sensitive to data outliers and anomalies – this is
contra-productive if typical, systematic seasonal behaviour
is to be identified to derive model structures for predicting
future system behaviour (Young, 2000, 2001; Young et al.,
2001). The NVR values in this study are optimized from the
data via maximum likelihood prediction error decomposition
as proposed byYoung and Pedegral(1999) and implemented
in the “Captain Toolbox”. The “Captain Toolbox” also pro-
vides uncertainty bounds (standard errors) of the fits and of

the time-varying parameter estimates, which are an important
criterion when evaluating the estimated state-dependencies.

In this study, DLR is applied to estimate the evaporative
fraction, EF [−], from time series of latent and sensible heat
fluxes with the aim to better capture its seasonal variations
and reduce the impact of short term fluctuations by noise ef-
fects:

λE(t) = EF(t) · (λE(t) + H(t)) + ζ(t) (2)

with t being the daily time steps [d]. The sum of the latent
heat flux,λE [MJ m−2 d−1], and the sensible heat flux,H
[MJ m−2 d−1], is assumed to represent the available energy
at the land surface. It shall be noted that, strictly speaking,
the error seriesζ in this and all the following DLR and SDP
equations has to be given a separate subscript since it is never
the same error series, but in favour of a better readability and
clarity we just use the symbolζ in all equations. An exam-
ple for EF calculated by means of DLR is shown in Fig.1a.
Additionally, DLR is used to depict the seasonal evolution of
the light use efficiency parameterε as represented in:

FG(t) = ε(t) · APAR(t) + ζ(t) (3)

where FG [gC m−2 d−1] is the flux of carbon uptake or
gross primary production, and APAR [MJ m−2 d−1] is the ab-
sorbed photosynthetically active radiation, andε [gC MJ−1]
is the time-varying light use efficiency parameter.

In contrast to DLR, the SDP estimation assumes that the
regression parameters vary with a state of the considered
non-linear system. This state variable, however, also varies
with time (Young and Pedegral, 1999; Young, 2001, 2000;
Young et al., 2001):

y(t) =

n∑
i=1

ci (ui(t)) · xi(t) + ζ(t) (4)

with ui being variables representing time-varying system
states. In the SDP algorithm,ci is again assumed to evolve
in a stochastic random walk process characterized by a white
noise sequence with a zero mean. Each sample instant de-
pends on the data in its vicinity in a state space in which all
involved variables are sorted with respect to the state vari-
ablesui , hence out of temporal order. As with the DLR
model, the NVR value determines the weighting of adjacent
samples (Jarvis et al., 2004).

With estimating the dominant behaviour of a time-varying
model parameter on other variables, SDP is perfectly suited
to support the derivation of appropriate model structures de-
scribing the light use efficiency from measured data. In
this study, SDP is therefore used to explore the seasonal
behaviour ofε in relation to various meteorological vari-
ables (temperature and water availability surrogates) and
their combinations, which are expected to influence the sea-
sonal evolution ofε. An example for this is shown in Fig.1b
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Fig. 1. (a)Example for the application of DLR to estimate the seasonal variation of the evaporative fraction, EF (see Eq.2). Data from MMSF,
2006.(b) Example for the application of SDP to estimate the evolution of the light use efficiency (ε) depending on the soil temperature.TS
(see Eq.3). Data from MMSF, 1999–2006.

for the data from the FLUXNET site MMSF; in this exam-
ple, the dependency ofε on the upper layer (2–10 cm depth)
soil temperatureTS [◦C] as estimated with SDP is depicted:

FG(t) = ε (TS(t)) · APAR(t) + ζ(t). (5)

For evaluation purposes of the Jarvis-model and the model
formulated in this study, the Nash-Sutcliff efficiency crite-
rion, EC, is applied beside the typically used coefficient of
determination,r2, as squared Pearson’s correlation coeffi-
cient (Legates and McCabe Jr, 1999; Krause et al., 2005),
and the bias as difference of the means of measured and mod-
elled time series. EC is defined as the sum of squared errors
of the predicted (P ) in relation to the observed (O) values
normalized by the variance ofO, and subtracted from unity
(Legates and McCabe Jr, 1999; Krause et al., 2005):

EC = 1 −

∑N
j=1

(
Oj − Pj

)2∑N
j=1

(
Oj − Ō

)2
(6)

with j running from 1 to the number of observed and mod-
elled time steps,N . In contrast tor2, EC is therewith sen-
sitive to additive and proportional differences between mea-
sured and modelled data.

To summarize the methodological approach of this study,
it shall be noted again that SDP is used as a diagnostic tool
to derive dependencies ofε on environmental variables and
therewith suitable model structures directly from the data.
The outcomes of the model building study ofJarvis et al.
(2004) are used as a basis to start from. The final model
derived on basis of the outcome of the SDP analysis is
subsequently calibrated. The parameter sensitivity is ana-
lyzed within a Monte Carlo framework. Finally, the site-
specifically optimized model parameters are brought into a
climate-vegetation context to discuss the suitability of the
model parameters for regionalization purposes.

3 Model identification

3.1 Evaluation of the Jarvis-model

Analysing daily flux data at two temperate forests (Harvard
Forest, UMBS) with SDP,Jarvis et al.(2004) identified the
light use efficiencyεJ [gC MJ−1] with respect toFG as ex-
pressed in the following equation:

FG(t) = εJ(t) · S0(t) (7)

to follow a sigmoidal relationship withTF [◦C], the time-
delayed soil temperature (TS). In the above equation, the
above-canopy incident solar radiation (S0 [MJ m−2 d−1]) in-
stead of the typically used absorbed PAR (APAR) was used
by Jarvis et al.(2004); therefore, strictly speaking,εJ is not
a light use efficiency and it was therefore termed “radia-
tion capture and utilization coefficient” (Jarvis et al., 2004,
p.940). The sigmoidal function ofεJ was described by fol-
lowing equations:

εJ(t) =
εmax,J

1 + exp
(
kT,J · (TF(t) − TI)

) (8)

where

TF(t) = (1 − α) · TS(t) + α · TF (t − 1). (9)

TI [°C] is the inflection point ofεJ between its minimum and
maximum level (εmax,J [gC MJ−1]) andkT,J [◦C−1] the rate
of change of this transition.α [−] is the lag parameter for
TF. The mean ofTS-values of the first 30 days was chosen
as starting point forTF. The soil temperature was filtered
because the measured time series showedεmax,J responding
with delay to changes ofTS. The four parameters,εmax,J, TI ,
kT,J andα, were site-specifically calibrated byJarvis et al.
(2004) against daily data of the two study sites. The model
was validated at Harvard Forest over a 6-year period. The re-
sulting optimized parameters were shown to be well-defined.

This promising modeling approach serves as starting point
for identifying a generalized model scheme applicable to a
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Fig. 2. ε obtained by DLR (see Eq.2) as well as modelled according toJarvis et al.(2004), both plotted vs. the delayed soil temperature
TF. DLR is applied to estimateε with the aim to better capture seasonal variations and reduce the impact of short term fluctuations by noise
effects for diagnostic purposes. Panel(a) showsε of the boreal deciduous forest Sylvania Wilderness with almost no decrease ofε for higher
temperatures, whereas(b) represents a typical example of coniferous sites (Tharandt).

broader spectrum of vegetation and climate types. To do so,
the original Jarvis-model is, as a first step, run for all study
sites regardless of their vegetational and climatological char-
acteristics to test the suitability as well as to analyse deficien-
cies of the model; the four constant model parameters (εmax,
TI , kT andα) are optimized at each study site individually
with the non-linear least squares method with regard to the
measured and modelled fluxes (FG). One difference is made
compared toJarvis et al.(2004): For better comparability
with other studies, the global radiationS0 is changed to PAR,
the photosynthetically active part ofS0. This change does
not impair the model applicability of the Jarvis-model since
PAR is usually a quite conservative fraction ofS0 (Stigter and
Musabilha, 1982), especially on a daily basis .

The Jarvis-model reproduces well the gross CO2 uptake
FG of boreal and temperate forests in terms ofr2- and EC-
values with respect to the measured and modelledFG-values.
The model performs particularly well at deciduous forests
with strong seasonal dynamics as Figs.2a and3 indicate. In
the former plot, the sigmoidal function describingε in the
Jarvis-model is compared with the measuredε, which is –
for better illustration of the dominant seasonal behaviour of
ε – somewhat noise-reduced by the application of DLR (see
Eq.3).

At forests sites in warmer C-climates and at needle-leaf
forests, however, the model shows deficiencies in the tem-
perature dependency ofε: The model is not able to capture
the decrease ofε at high temperatures (Fig.2b), which is not
surprising considering the sigmoidal form of the function.
r2- and EC-values with regard to the measured and modelled
FG time series are quite satisfying for most forests, though
(Fig. 3). However, a comparison withε such as shown in
Fig. 2b reveals that these moderate to good model perfor-
mances are often just a result of the fact that PAR itself ex-
plains a large variation ofFG and, furthermore, a result of
the nature of the parameter optimization procedure, which
– up to a certain degree – counterbalances shortcomings of
model formulations; particularly,α seems to compensate in-
appropriate model structures.FG of forest sites experiencing
hot summers as well as most grasslands cannot be simulated

Fig. 3. Study sites in a vegetation-climate matrix; within one class,
the sites are ranked according to their mean temperature from top
to down. The performance of theJarvis et al.(2004) model is in-
dicated in 3 categories: good (green,r2 > 0.8), moderate (yellow).
bad (red,r2 < 0.5). Koeppen-Geiger-climate classes: steppe cli-
mate (BS), temperate (C), continental (D); summer dry (s), fully
humid (f); hot (h), cold in winter (k); hot summer(a), warm sum-
mer (b), cool summer(c), cold winter(d); vegetation classes: de-
ciduous broadleaf forest (DBF), mixed (MF), evergreen needleleaf
(ENF), evergreen broadleaf (EBF), grass (G).

by the Jarvis-model at all, because the assumed sigmoidal
temperature dependency ofε does not exist, letting the con-
clusion to be drawn that a water availability proxy is lacking.
Even at the fully humid study sites analyzed byJarvis et al.
(2004), cross-correlations between the model residuals and
a water availability measure were found. Consequently, not
only the dependency ofε to TS has to be reconsidered, but
also appropriate water availability measures have to be iden-
tified and their functional relationship toε has to be derived.
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Fig. 4. ε depending on the major driver ofFG as obtained by a SDP-model with one state variable (Eq.4 with N = 1). State variables
explainingε wereTS at Duke, SWC at Vaira Ranch. API and Audubon. The grey bounds encompassing the estimated relationship represent
the standard errors of the SDP estimation.

3.2 Finding new model structures

In order to identify the dominant state dependencies ofε at
all study sites, SDP is applied first withTS as state variable
to systematically examine which patternε follows with re-
gard toTS (Eq. 5) confirming that at many sites a distinct
decrease ofε with increasingTS occurs (Figs.2b and4a).
APAR is used instead of PAR for better comparability with
other studies and because of the overwhelming evidences
for the significance of the LAI or FPAR as scaling-factor
for soil-vegetation-atmosphere-transfer processes (Watson,
1958; Monteith, 1977; Tucker and Sellers, 1986; Goetz and
Prince, 1999; Gower et al., 1999; Lindroth et al., 2008)
which cannot be compensated by other environmental vari-
ables used in the light use efficiency modeling approach.

At those sites where the Jarvis-model is not able to prop-
erly reproduce the carbon flux dynamics at all, SDP not
surprisingly also fails to find a clear temperature depen-
dency which indicates some other controlling factor on the
ε-dynamics, presumably the water availability. This failure
is expressed in terms of very high standard errors of the SDP
estimations and/or a lowr2-value. SDP is therefore used to
analyze several water availability measures (W ) as potential
further controls onε:

FG(t) = ε(W(t)) · APAR(t) + ζ(t) (10)

including EF (see Eq.2), the vapor pressure deficit (VPD
[kPa]), the top-layer (1–15 cm depth) soil water content
(SWC [%], Fig. 4b), and the antecedent precipitation in-
dex (API [mm], Fig.4c). Besides API, these variables have
demonstrated before to significantly affect gross primary
production and are frequently used in light use efficiency
models as moisture availability indicator (Potter et al., 1993;
Prince et al., 1995; Heinsch et al., 2006; Yuan et al., 2007;
Mäkel̈a et al., 2008). API is calculated by a weighted sum
of daily precipitation values (P [mm]) in a time windowZ

[d] before the current time stept [d] (Linsley et al., 1982;
Samaniego-Eguiguren, 2003):

API(t) =

Z∑
d=0

κ−d
· P(t)t − d (11)

whered denotes the number of time steps before the current
stept andκ [−] is a recession constant commonly ranging
between 0.85 and 0.98 (Chow, 1964). In this study, a lower
boundary of 0.90 was chosen for forests and a lower bound-
ary of 0.88 for grasslands; the upper boundary was retained.
A cosinus function is chosen such, thatκ varied between
these extremes with the lowest value ofκ in summer and the
highest in winter to take the higher recession of precipitation
events in summer due to a higher evapotranspiration into ac-
count. Indeed, in several cases the SDP-analysis shows a
distinct dependency on the water availability state variables
(Fig. 4b and c).

At most sites, however, neither the temperature nor a water
availability proxy alone can explain the evolution ofε or FG,
respectively, satisfyingly. Therefore, a dimension is added to
the SDP model and a two-dimensional SDP regression (see
Eq.4) is applied

FG(t) = c1 (TS(t)) ·APAR(t)+c2(W(t)) ·APAR(t)+ζ(t) (12)

or respectively

FG(t) = (c1 (TS(t)) +c2 (W(t))) · APAR(t) + ζ(t) (13)

with

c1 (TS(t)) + c2 (W(t)) = ε(t) (14)

usingTS and one of the mentioned water availability prox-
ies. APAR is chosen instead ofS0 as used in theJarvis
et al. (2004) study for better comparability with other stud-
ies and because of the overwhelming evidences for the sig-
nificance of the leaf area index or FPAR as scaling-factor
for soil-vegetation-atmosphere-transfer processes (Watson,
1958; Monteith, 1977; Tucker and Sellers, 1986; Goetz and
Prince, 1999; Gower et al., 1999; Lindroth et al., 2008), an
explanatory power and intrinsic scaling factor which can-
not be compensated by other environmental variables used
in the light use efficiency model approach. The model per-
formance varies between the water availability surrogates at
the study sites, but none of them delivers the best results in
every case. EF, however, appears to perform most consis-
tently throughout the sites, whereas the use of API tends to
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lead to somewhat higher uncertainties, i.e. the related param-
eter estimations are less uniquely identifiable compared to
the other state variables. The nonparametric relationship be-
tweenεmax andTS in the two-dimensional SDP estimation
either has a sigmoidal form, or it can be described by a (sig-
moidal) peak function (Fig.5a), or no clear relationship can
be identified at all (Fig.5c). If a clear relationship betweenε
and the water availability state variable exists – as in the ma-
jority of cases – it usually shows a threshold-like behaviour
as demonstrated exemplarily in Fig.5b and5d.

3.3 Formulating the generalized model

To overcome the applicability restrictions of the basic model
with the lessons learned in the SDP analysis, the sigmoid
temperature function is changed to a logistic peak function,
fT, which enables a decrease ofε with increasing tempera-
tures after a sigmoidal shift from the minimum to the maxi-
mum level:

fT =
4 · exp

(
−

(
TS − Topt

)/
kT

)
1 + exp

(
−

(
TS − Topt

)
/ kT

)2
(15)

with kT [◦C−1] being the rate of change andTopt [◦C] being
the temperature at which the function reaches its maximum.

To allow for the effect of water availability fluctuations,
a sigmoid function is used since SDP shows the tendency
that at very low and very high values of the respective wa-
ter availability proxiesW (EF, SWC, API and VPD) there
is no change of the influence onε; this behaviour is evident
in the one-dimensional SDP estimation (Fig.4b and c) and
gets even more obvious when taking additively both temper-
ature and moisture in one SDP-model into account (Fig.5).
The function allowing for the influence ofW on εmax, fW, is
therefore chosen to be a sigmoid function:

fW =
1

1 + exp (kW · (W − WI))
(16)

with kW being the rate of change between the minimum and
maximum levels offW and WI being the inflection point.
The units of the parameters of this subfunction depend on the
variable used forW ; in case of the usage of EF they are con-
sequently dimensionless. BothfT as well asfW are scaled
between zero and unity.

To account for lag effects between the response ofε to
temperature variations we allow again for the lag effect us-
ing the lag-parameterα applied toTS (Eq.9) as it has proven
to be significant in similar light use efficiency model ap-
proaches as proposed byMäkel̈a et al.(2006, 2008) for sites
in temperate and boreal climates. However, in cases ofW be-
ing the main driver ofε as it is the case in semi-arid climates,
the lag function is applied toW instead ofTS. In applying
α only to the main driver, the number of free parameters is
minimized, and the lag is anyway only apparent in a distinc-
tive manner on a daily time step basis when the canopy has to

Fig. 5. ε as function ofTS and EF at the Mediterranean site Roc-
carespampani(a, b) and as function ofTS and VPD at the desert-
grassland Audubon(c, d)as determined by the additive SDP regres-
sion (Eq.12). The grey error bounds represent the standard errors
of the SDP estimation.

regenerate and redevelop green tissue after a dormant period;
and these periods are largely determined by the main driver
such as the temperature in temperate and boreal climates and
a moisture proxy in semi-arid climates.

The final model is formulated as follows:

FG = εmax · (p · fT + (1 − p) · fW) · APAR (17)

wherep is a dimensionless parameter scaling the subfunc-
tion to a range between zero and unity. If both temperature
conditions and water availability are optimal,εmax is reached.
If no humidity dependency can be detected, because there is
always enough water available, andε-variations can be ex-
plained by the temperature,p approaches 1 and the second
term approaches zero, and vice versa. 1−p is consequently
indirectly a measure for the strength of the water availability
influence on a vegetation stand. It is therefore an interesting
site-specific parameter, particularly against the background
of a subsequent model regionalization.

4 Model calibration and evaluation

The final model formulation given by Eq. (17) and its sub-
funtions (Eqs.9, 15and16) comprises seven constant model
parameters includingεmax, p, Topt, kT, WI , kW, andα. Be-
fore the final calibration, the sensitivity and variability for
each of these parameters is explored. To do so, a set of
750 000 Monte Carlo simulations is executed at each loca-
tion allowing the seven parameters to vary randomly within
predefined (bio-physiologically meaningful) ranges follow-
ing a uniform distribution. Using the sum of squared errors
between measured and modelledFG as a performance crite-
ria we identified the site specific parameters distributions of
the 10 000 best model runs. Distinct minima of the parame-
ter response surface, indicating a unique identifiability, could
be usually observed for the parametersεmax andp as well as
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Fig. 6. Probability density functions (PDF) resulting from the Monte Carlo sensitivity study (N = 750 000) for the proposed model in which
all seven constant model parameters could vary freely. The PDFs are drawn for the best solutions (1%) over all sites (with regard to the sum
of squared errors between measured and modelledFG time series) for the four parameters of the subfunctions (fT, fW): Topt (a), kT (b),
WI (c), kW (d). In the final model calibration,kW is set constant.

Fig. 7. fT, fW and the cumulative sums ofFG with uncertainty bounds (grey) at Wetzstein(a) and Duke Forest(b). EF was used to model
FG in (a) and SWC in(b) as water availability measure. The 95% uncertainty bounds are due to the propagation of uncertainties in associated
parameter estimates, as obtained by a Monte-Carlo simulation (N = 1000); see text for further details.

for either the parameters offT or that offW, here dependent
on the dominant control (temperature or water availability,
see below). Analysing the 1% best solutions of all sites al-
together reveals that the parameters leading to the best solu-
tions cover a wide range within the assigned upper and lower
boundaries. The respective probability distribution functions
(PDF) for the seven parameters are drawn; the PDFs for the
parameters of the subfunctions are depicted in Fig.6. The
PDF of the parameterkW shows the sharpest peak, thus most
of the best values at all sites are located in a relatively narrow
range (Fig.6d). Therefore, to avoid over-parameterization of
the model we treatedkW constant at the median of all the
bestkW-values and only the remaining six parameters,εmax,
p, Topt, kT, WI andα are calibrated. The model calibration is
performed separately for each candidate for the water avail-
ability proxy W (EF, SWC, API and VPD). The calibration
is carried out using the Matlab nonlinear least-square opti-
mization routine “lsqnonlin” which applies a subspace trust-
region method and is based on the interior-reflective Newton
method as described inColeman and Li(1994).

The calibration performed well for all model runs:r2 and
EC-values of greater than 0.7 in most cases as well as rela-
tively small biases indicate the ability of the model to repro-
duceFG-fluxes. The parameters are generally well defined
(see Table2). Examples offT andfW as well as the resulting
cumulative sums ofFG in comparison with measured cumu-
lative sums are shown in Fig.7 with their 95% confidence
intervals caused by the propagation of the uncertainties in
the associated parameter estimates as obtained by a Monte-
Carlo simulation (N = 1000); for details see e.g.Thornley
and Johnson(2002). These uncertainty bounds are well
bracketing measured cumulativeFG-data. The minimal and
maximal bias for all sites and models runs is−0.23 and
0.55 gC m−2 d−1, respectively, with positive biases occurring
more frequently. For all model runsr2 ranges between 0.4
and 0.93. The model with EF as moisture surrogate resulted
in a meanr2 of 0.85 with a standard deviation of 0.10. The
respective values for the other model runs are 0.84 and 0.08
for SWC, 0.83 and 0.11 for VPD, and 0.82 and 0.11 for API;
thus, the model with EF performed best.
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Table 2. Optimized constant model parameters with their 95% confidence intervals (in brackets) and model accuracy measures coefficient
of determinationr2 and efficiency criterion EC with respect to the measured and modelledFG-time series. Full site names can be found in
Table1.

Name εmax p Topt kT WI α r2 EC

US-Blk 0.95 (0.01) 0.89 (0.04) 11.60 (0.08) 6.58 (0.23) 0.24 (0.05) 0.29 (0.04) 0.78 0.78
US-Blo 0.82 (0.00) 0.52 (0.01) 5.59 (0.09) 5.59 (0.10) 0.45 (0.00) 0.91 (0.00) 0.74 0.73
CA-Man 0.78 (0.00) 0.30 (0.01) 8.91 (0.09) 4.01 (0.11) 0.29 (0.00) 0.05 (0.05) 0.85 0.84
US-SP3 1.07 (0.01) 0.44 (0.02) 17.99 (0.13) 6.01 (0.20) 0.58 (0.01) 0.97 (0.00) 0.44 0.27
SE-Fla 0.89 (0.01) 0.66 (0.01) 5.00 (0.14) 6.05 (0.17) 0.41 (0.01) 0.00 (0.24) 0.85 0.85
US-GLE 0,86 (0.01) 0.79 (0.01) 10.20 (0.08) 5.12 (0.08) 0.47 (0.01) 0.32 (0.02) 0.88 0.88
UK-Gri 1.64 (0.01) 0.98 (0.01) 8.59 (0.44) 9.87 (0.77) 0.42 (0.16) 0.00 (0.42) 0.89 0.85
Fl-Hyy 1.16 (0.01) 0.55 (0.00) 7.90 (0.05) 4.87 (0.04) 0.54 (0.00) 0.61 (0.02) 0.92 0.92
FR-LBr 1.13 (0.01) 0.62 (0.01) 12.41 (0.20) 7.07 (0.21) 0.64 (0.01) 0.00 (0.10) 0.76 0.75
NL-Loo 1.66 (0.01) 0.63 (0.00) 6.70 (0.27) 9.27 (0.25) 0.62 (0.00) 0.00 (0.13) 0.87 0.83
US-Me2 0.92 (0.00) 0.57 (0.01) 12.94 (0.08) 7.94 (0.12) 0.32 (0.01) 0.07 (0.05) 0.85 0.85
US-Me5 0.82 (0.01) 0.41 (0.01) 13.30 (0.08) 4.49 (0.13) 0.32 (0.01) 0.00 (0.04) 0.84 0.84
US-NR1 0.82 (0.00) 0.59 (0.01) 8.52 (0.04) 3.86 (0.05) 0.44 (0.00) 0.00 (0.04) 0.84 0.84
SE-Nor 0.95 (0.01) 0.60 (0.01) 7.84 (0.20) 9,27 (0.23) 0.42 (0.00) 0.00 (0.28) 0.85 0.85
DE-Tha 1.93 (0.01) 0.57 (0.00) 8.11 (0.05) 4.25 (0.04) 0.53 (0.00) 0.00 (0.04) 0.88 0.87
DE-Wet 1.82 (0.01) 0.67 (0.00) 6.78 (0.05) 4.76 (0.03) 0.59 (0.00) 0.00 (0.02) 0.89 0.88
US-Wrc 0.98 (0.02) 0.82 (0.02) 5.77 (0.09) 5.64 (0.05) 0.71 (0.02) 0.00 (0.03) 0.70 0.65
IL-Yat 1.72 (0.01) 0.50 (0.01) 7.19 (0.42) 7.39 (0.20) 0.22 (0.00) 0.98 (0.00) 0.91 0.91
US-Bar 1.14 (0.01) 0.59 (0.01) 14.52 (0.08) 3.84 (0.05) 0.47 (0.01) 0.87 (0.01) 0.93 0.93
US-Dk2 1.25 (0.00) 0.43 (0.01) 14.55 (0.11) 5.04 (0.10) 0.71 (0.00) 0.98 (0.00) 0.93 0.93
DE-Hai 1.72 (0.01) 0.39 (0.00) 11.23 (0.04) 2.24 (0.03) 0.53 (0.00) 0.00 (0.03) 0.93 0.93
FR-Hes 1.46 (0.00) 0.43 (0.01) 13.63 (0.04) 2.75 (0.04) 0.52 (0.00) 0.00 (0.07) 0.85 0.85
US-MMS 1.29 (0.00) 0.49 (0.01) 21.19 (0.19) 5.67 (0.15) 0.57 (0.00) 0.00 (0.07) 0.91 0.91
US-MOz 0.95 (0.00) 0.56 (0.00) 9.63 (0.26) 7.33 (0.16) 0.59 (0.00) 0.98 (0.00) 0.92 0.92
IT-Ro1 1.19 (0.01) 0.37 (0.00) 15.05 (0.11) 4.99 (0.08) 0.47 (0.00) 0.81 (0.00) 0.93 0.93
DK-Sor 1.73 (0.01) 0.75 (0.01) 12.64 (0.05) 3.17 (0.03) 0.50 (0.01) 0.87 (0.01) 0.87 0.87
US-Syv 0.85 (0.01) 0.79 (0.01) 20.06 (0.25) 5.83 (0.16) 0.35 (0.02) 0.10 (0.04) 0.94 0.93
US-UMB 1.07 (0.00) 0.71 (0.01) 17.42 (0.06) 4.17 (0.05) 0.57 (0.01) 0.41 (0.02) 0.96 0.96
US-WBW 1.10 (0.01) 0.48 (0.01) 18.35 (0.10) 4.43 (0.08) 0.58 (0.00) 0.09 (0.08) 0.88 0.88
US-Wcr 1.28 (0.00) 0.67 (0.02) 18.66 (0.06) 3.39 (0.09) 0.40 (0.01) 0.33 (0.03) 0.90 0.90
IT-Cpz 1.25 (0.01) 0.14 (0.01) 23.40 (3.39) 12.00 (2.78) 0.37 (0.00) 0.95 (0.00) 0.77 0.61
FR-Pue 1.03 (0.00) 0.60 (0.00) 8.51 (0.10) 5.69 (0.05) 0.43 (0.00) 0.84 (0.01) 0.79 0.75
US-Aud 1.04 (0.01) 0.24 (0.01) 24.45 (0.13) 2.00 (0.12) 0.33 (0.00)) 0.00 (0.05) 0.68 0.68
US-Goo 1.47 (0.01) 0.31 (0.01) 23.56 (0.08) 2.00 (0.08) 0.53 (0.00) 0.95 (0.00) 0.88 0.87
CA-Let 1.49 (0.01) 0.35 (0.00) 12.19 (0.12) 4.68 (0.08) 0.47 (0.00) 0.00 (0.04) 0.92 0.92
AT-Neu 1.80 (0.01) 0.64 (0.02) 12.21 (0.08) 4.04 (0.12) 0.64 (0.01) 0.00 (0.08) 0.83 0.82
CH-Oe1 2.25 (0.01) 0.54 (0.01) 9.27 (0.17) 7.56 (0.14) 0.78 (0.00) 0.00 (0.07) 0.88 0.86
US-FPe 1.09 (0.02) 0.63 (0.01) 9.13 (0.31) 6.30 (0.19) 0.43 (0.01) 0.00 (0.10) 0.49 0.48
US-Var 1.36 (0.00) 0.38 (0.00) 13.24 (0.05) 2.71 (0.04) 0.57 (0.00) 0.91 (0.00) 0.91 0.91
BE-Bra 1.05 (0.01) 0.66 (0.00) 17.66 (0.42) 10.13 (0.41) 0.57 (0.01) 0.00 (0.16) 0.87 0.87
US-Dk3 1.03 (0.01) 0.69 (0.01) 16.52 (0.28) 12.00 (0.68) 0.55 (0.01) 0.11 (0.51) 0.84 0.82
US-Ha1 1.41 (0.02) 0.89 (0.01) 20.88 (0.36) 6.34 (0.17) 0.56 (0.02) 0.78 (0.01) 0.91 0.91
US-Ho3 1.32 (0.01) 0.28 (0.00) 5.00 (0.06) 2.00 (0.05) 0.31 (0.00) 0.00 (0.09) 0.88 0.88
BE-Vie 1.09 (0.01) 0.92 (0.01) 14.81 (1.61) 12.00 (1.60) 0.37 (0.03) 0.98 (0.00) 0.87 0.85

In the following, results are described in more detail for
the model with EF instead of SWC, API and VPD as water
availability proxy, since (i) the calibrations with EF resulted
in the highest quality criteria with generally the lowest confi-
dence intervals, (ii) overall, EF already performed best in the

SDP-analysis, (iii) it was often successfully employed as wa-
ter availability proxy in similar studies (Kustas et al., 1994;
Barr et al., 2007; Yuan et al., 2007) and proved to be superior
as explaining variable forε in similar analysis (Garbulsky
et al., 2010), and (iv) from a regionalization point of view
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Fig. 8. The six model parametersεmax (a), p (b), Topt (c), kT (d), WI (e), α (f) in a vegetation and climate context. See Fig.3 for an
explanation of the abbreviations.

there is the potential it can be retrieved by remote sensing
(Crago, 1996). Results for the other moisture surrogates are
shown exemplarily (Figs.7b and11). The resulting parame-
ters of the optimization procedure, their confidence intervals,
r2-values and model efficiencies EC are given in Table2 for
the EF-model. All calibrated constant model parameters are
shown in a climate-vegetation-matrix (Fig.8).

The parameters offT have in general wider confidence in-
tervals thanWI of fW; one reason for this certainly is the
fact thatfT has two free parameters, another reason can be
found in the wider range of temperature values compared to
EF. However, fixation of one parameter offT deteriorates
the model performance too much. The higherp, thus the
more the temperature dominates the variations ofFG, and
the smaller the confidence intervals of the parameterskT and
Topt of the corresponding temperature function tend to be.
Even more pronounced is the effect vice versa: The smaller
p, thus the higher the influence of EF, the smaller are the con-
fidence intervals ofWI by trend (Fig.9a). This fact can also
be seen in the SSE-values resulting from a Monte Carlo sen-
sitivity study. This was performed again for the final model
with the six free model parameters: For highp-values, thus
a high influence of the temperature onFG, theTopt-values of
the best parameter sets are typically located in a relatively
narrow range, and vice versa, ifp is low and EF dominates
FG variations,WI is usually better defined (Fig.10). This ob-
served characteristic is an advantage of the proposed model
structure: the model is on the one hand flexible enough to

Fig. 9. 95% confidence intervals of the calibrated model parameters
kT, WI andTopt of the model subfunctionsfT andfW (see Eqs.15–
17) in relation to the calibrated values ofp (a), and the 95% con-
fidence intervals of all model parameters in relation to the number
of available measurement years used to calibrate the model(b) with
SWC as water availability measure.
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Fig. 10. The parameter space ofp andTopt (a, c)andp andWI (b, d) resulting from Monte Carlo simulations (10 000 best parameter sets
according to the sum of squared errors (SSE) between measured and modelledFG-values out of 750 000 runs) showsTopt being well defined
if p is high (greater contribution offT) as shown for Wetzstein(a) andWI being better defined ifp is low (greater contribution offW) such
as at Lethbridge(d). The same is true vice versa:WI is not well defined iffT has the greater contribution such as at Wetzstein(b). andTopt
is rather insensitive iffW dominates such as at Lethbridge(c). The colors represent different classes with regard to the sorted SSE-values;
the numbers refer to the ranking of the model results with regard to these values.

simulate daily fluxes of sites with very different characteris-
tics, but on the other hand, gives less weight to the less influ-
encing variables, which are at the same time prone to uncer-
tainties in model parameter optimizations. From Fig.9b it
is also obvious that with increasing length of the calibration
time series the parameter confidence intervals tend to narrow,
hence better results can be expected with the availability of
longer measurement time series.

The model parameterεmax varied at forest sites be-
tween 0.78 gC MJ−1 at a needleleaf forest in Canada and
1.93 gC MJ−1 at a German needleleaf forest in a temperate
climate with mild summers (Cfc). Deciduous forests form
the highest averageεmax with a mean of 1.25 gC MJ−1 fol-
lowed by the mixed forests (1.18 gC MJ−1) and evergreen
needleleaf forests (1.16 gC MJ−1). Evergreen broadleaf
forests have with 1.14 gC MJ−1 the lowest averageεmax due
to low values in boreal climates and those with dry summers.
Regarding the climate classes with more than one forest site,
Cfb-class reveals the highest averageεmax, closely followed
by Dfb; Csb and Dfc have the lowestεmax. At grasslands
sites, εmax-values are surprisingly high:εmax-estimations
reach 2.25 at Oensingen and 1.80 at Neustift and lead to an
averageεmax of 1.50 gC MJ−1. The highestεmax-values at
Oensingen are attained in spring and autumn when tempera-
tures are favourable but the amount of incoming radiation is
still relatively low.

Optimized parameter values forp, indicating the influ-
ence ofTS and EF, range between zero and unity and only
the lowest values are omitted:FG at the Mediterranean Roc-
carespampani and at Audubon, Arizona, is largely explained
by EF with ap-value of 0.14 and 0.24, respectively,FG at
Griffin, England, follows highly the course of temperature
(p = 0.98). Most forest sites, however, have a mediump-
value between 0.4 and 0.8. The lowp-values at Hainich and
especially at Boreas and Howland can be explained by a an
especially high correlation betweenε and EF in the seasonal
course. At Hainich, particularly the distinct summer drought
of 2003 (Reichstein et al., 2007) with a strong decrease of

ε in late summer leads to an higher influence than at the
other sites in this climate class.p-values greater than 0.6
are mainly clustered in the forest and fully humid climate
classes, whereasp-estimates at forests at summery sites as
well as grasslands take values in the medium to lower range.

The temperatureTopt at which the sites reachεmax is
smaller than 14◦C for the all needleleaf forests but the
warmest fully humid study site, a result of lower average
temperatures and high light use efficiencies in spring and
autumn. The deciduous forests, instead, haveTopt-values
greater than 14◦C; here, the most efficient periods occur
when the leafs have emerged following the rise of temper-
ature in spring and before the loss of the leafs or they occur
even in summer when temperatures get not too high and there
is no lack of water. The grasslands located at sites with hot
and semi-arid conditions are dominated by medium to high
Topt-values up to 24.5◦C in case humid and warm periods
coincide. The alpine and northern Dfb grassland sites are
characterized by medium to lowTopt-estimates correspond-
ing to the mild average temperatures and highest efficiencies
in spring and autumn.

In addition to the information at which temperatureεmax
occurs, the parameterkT characterizes the steepness of the
temperature sensitivity in relation to the temperature range
and the vegetation period. Accordingly, deciduous forests,
especially at colder sites, as well as grasslands at semi-arid
sites have rather lowkT-values corresponding to a sharper
peak of the temperature function, whereas evergreen sites
particularly with a relatively small annual temperature range
feature medium to highkT-values leading to a flatter and
wider peak.

The parameterWI determining the inflection point of the
fW-function takes in the most cases values between 0.3
and 0.7, but more extreme values are represented, too. The
lower WI-values cluster in the cooler climate classes and
those with hot and dry summers, whereas the representatives
of the upper third of theWI-range cluster in the fully humid
climate classes with warm and hot summers.
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Fig. 11. Model parameterp with respect to vegetation and climate classes for the model runs with SWC(a), API (b), and VPD(c) as input
variables. See Fig.3 for an explanation of the abbreviations.

The optimized values of model parameterα, finally, are
assigned to one end of the scale between zero and unity in
most cases. It reaches high values near unity reflecting dis-
tinct lag processes at deciduous study sites throughout the
climate classes and warmer sites of the other forest classes.
However, in the most classes both extremes – lag effects and
direct correspondence ofα and the state variable, are rep-
resented. The C-climate grasslands show delay processes
whereas the grasslands in semi-arid and hot as well as con-
tinental D-climates seem to react rather promptly to the trig-
gering variables.

Finally, the parameterp for the further water availability
proxies SWC, API and VPD is presented in Fig.11. In case
of SWC and API it illustrates a more homogeneous pattern of
p-values within the vegetation-climate-matrix with lowerp-
values predominating in B- and summery climates as well as
grasslands with exception of the alpine sites. More often than
for SWC and API, a higher explaining power is attributed
to VPD, especially at warmer coniferous sites. The highest
influence of aW substitute, however, is assigned to API at
the desert grassland Audubon with ap-value of 0.15, thus a
contribution of 85%.

5 Discussion

State dependent parameter estimation was used to deter-
mine typical non-parametric relationships between the light
use efficiency and relevant state variables. An one and
two-dimensional SDP estimation revealed the relationship
betweenε and TS to follow a (sigmoidal) peak function.
Limiting functions with respect to temperature have been
used before: E.g.Mäkel̈a et al. (2008) tested a model at
several coniferous study sites and used a site-specific piece-
wise function with a linearly increasing part and a constant
value above a threshold temperature; this approach con-
trasts with this study, in which especially the coniferous for-
est sites show a relatively small efficiency amplitude during
the year with the highestε-efficiencies at lower tempera-
tures followed by an efficiency-decrease at higher temper-
atures. Yuan et al.(2007) who also modelledFG across a

broad range of conditions applied a peak function, too. They
estimated the temperature optimum by non-linear optimiza-
tion merging the data from all study sites. In our study,
however, it is shown that highest efficiencies occur at tem-
peratures that vary significantly across study sites. Regard-
ing moisture availability measures, various functional forms
as well as different proxies have been applied previously:
E.g.,Yuan et al.(2007) chose a linear relationship between
ε and EF.Mäkel̈a et al.(2008) represented the relationship
betweenε and VPD by an exponential function and between
ε and SWC by a Weibull-function or a sigmoidal function
following Landsberg and Waring(1997). In this study, SDP
revealed in most cases a threshold-like response ofε to all
proxies givenε was sensitive to them. Overall, SDP showed
a combination of the temperature and a water availability
measure to be an appropriate way to modelFG if the func-
tions describing theε-dependencies are flexible enough.

Indeed, the weighted additive model formulation has
proven to serve as a robust approach balancing between ac-
curate model results, the possibility to apply the model to
a broad range of sites while the model parameters are well
defined. Most light use efficiency models use a multipli-
cation ofε down-regulating scalars (e.g.,McMurtrie et al.,
1994; Landsberg and Waring, 1997; Potter and Klooster,
1999; Xiao et al., 2004b; Heinsch et al., 2006; Mäkel̈a et al.,
2008). This can lead to the parameterization of maximum
ε-values which are often not reached in reality, especially
if a down-regulating variable has no strong influence at a
given site, as for example the often used top-layer soil wa-
ter content in a forest with deep roots can be. Furthermore,
insensitive variables are prone to high calibration uncertain-
ties of respective parameters; these are less important if their
influence is relativised by a weighting factor as realized in
the proposed model. Additionally, maximumε-values vary
if a modifying scalar is added or omitted in a multiplica-
tive approach (Mäkel̈a et al., 2008); the so-derived potential
ε is in these cases a calibration artifact and not necessarily
physiologically meaningful. Instead, the proposed additive
model with a site-specific weighting of the variables’ influ-
ence onε leads to a maximumε which is actually realized
by the considered vegetation stands. In contrast to other
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studies (e.g.Yuan et al., 2007, 2010), this approach is based
on the assumption that no universal maximumε and opti-
mal temperature exist even under ideal conditions; we as-
sume, instead, that biochemical processes are not universal
across species and that maximumε-values, optimal temper-
atures and other parameters vary between vegetation stands
(Turner et al., 2003; Bradford et al., 2005; Schwalm et al.,
2006; Kjelgaard et al., 2008; Stoy et al., 2008). Predictions
with this model approach obviously require sufficiently long
measurement time series covering optimal periods for vege-
tation growth. The minimum required measurement period
of three years presupposed in this study can be critical in
this sense (Nouvellon et al., 2000). But this restriction will
become less important when FLUXNET measurement time
series get longer and are made available for such calibration
studies.

With the data available the calibrated parameterεmax var-
ied strongly between sites as expected for the reasons stated
above. Compared to maximum light use efficiency val-
ues of several studies reported in the comprehensive litera-
ture review ofGoetz and Prince(1999) the calibrated val-
ues from this study appear to be somewhat greater. Com-
pared to the average values per vegetation type obtained by
Garbulsky et al.(2010) from measurement data, however,
the εmax-values tend to be smaller; the highestεmax-value
in their study was 2.01 gC MJ−1 compared to a value of
2.25 gC MJ−1 in our study. However, in both studies most
vegetation types were statistically not representative; and
certainly, they are significantly influenced by the choice of
the FPAR data source and the processing of the measured or
remotely sensed data. Interestingly, the highestεmax-value
reached at the grassland Oensingen is equal to the globally
calibrated potential light use efficiency in the modeling study
of Yuan et al.(2010). On basis of eddy-covariance data,Gar-
bulsky et al.(2010) determined also grasslands as vegetation
type with the highestεmax-values among their 35 study sites.
The highest forestεmax is found at Tharandt; in their model-
ing study,Mäkel̈a et al.(2008) observed a high potentialεmax
at Tharandt relative to other study sites, too.

The calibration ofp shows that temperature has indeed
a high influence onε, especially in cooler ecosystems, as
shown by numerous studies (Runyon et al., 1994; Chen et al.,
1999; Nouvellon et al., 2000; Turner et al., 2003; Schwalm
et al., 2006). SWC as modulating variable had the highest
impact at summerdry sites and grasslands what is not surpris-
ing considering the short rooting depth and the low depth at
which the SWC-measurements were made. VPD appears to
influenceε not only in dry areas asp values around 0.6 in bo-
real and temperate forests indicate; indeed, the interrelation
between VPD andε via stomatal conductance has often been
shown (Wang and Leuning, 1998; Goetz and Prince, 1999;
Lagergren et al., 2005; Katul et al., 2003; McCaughey et al.,
2006) which contrasts with the study ofGarbulsky et al.
(2010) who only found a weak influence of VPD. Model runs
with API do not reach the performance of the other model

configurations, but at sites with strong periodic water short-
age they can explainε-variations with the lowestp-values,
thus the highest contribution of allfW-functions compared
to the otherW -variables. API is therefore considered as
promising variable. Overall, however, the optimization pro-
cedure assigns EF most often the highest explaining capa-
bility on ε, and model runs with EF lead to the best results.
This is not surprising considering the observed correlation
of ε and EF (Monteith and Greenwood, 1986; Schulz and
Jarvis, 2004) and thus EF being an “integrator” of environ-
mental conditions. The model with EF consequently leads to
a somewhat better model performance and even allows the
modeling of managed sites such as Oensingen and Neustift
to a certain degree. This behaviour is supported byStoy et al.
(2009) who performed a orthonormal wavelet transformation
analysis on measured CO2-fluxes and found a high impor-
tance of “endogenous” variables compared to purely mete-
orological variables and a strong coupling betweenλE and
FG. In the analysis ofGarbulsky et al.(2010), EF is also
determined to be the best explaining variable ofε. In their
study, EF alone explainedε best and their model deteriorated
when adding another variable. This contradicts with our SDP
analysis and final model calibration which assigned EF a sig-
nificant influence but never the only contribution to the vari-
ation ofε: p-values of nearly unity occurred but only in one
case ap-value of smaller than 0.2 was determined. Overall,
both SDP-analysis and the model application show that both
temperature and water availability influence the variation of
ε but can not explained by one variable alone.

Throwing a glance at the distribution of the other model
parameters in the climate-vegetation matrix may lead to the
assumption that the optimized parameter values have no
bearing on site specific characteristics. However, in the ma-
jority of cases the parameter values can be related to the veg-
etation class (i.e. deciduous or evergreen), the length of the
vegetation period (higher or lowerkT), the season in which
ε gets maximal, the seasonal fluctuation of LAI and the de-
gree of its minimization in dormant periods, the start of the
vegetation period in relation to the course of temperature, the
temperature amplitude, or the degree of superposition of sea-
sonal temperature and humidity course. Noticeable are for
example the differences of such similar forest sites as How-
land and Harvard; both are located in the same category in the
climate-vegetation matrix: mixed forests in a boreal climate
with warm summers. While the mean annual temperature is
somewhat lower at Harvard, maximumε-values at Howland
occur in spring and autumn whereas the maximumε at Har-
vard occurs rather in summer which explains the higherTopt
indicating a higher fraction of deciduous trees than at How-
land; the higherε at Harvard is in line with the assumptions
that Harvard needs more time to develop foliage and reach
εmax.

The model performance as determined byr2, EC and the
degree of parameter uncertainty militates in favour of the
proposed model particularly with regard to the wide variety
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of ecosystem characteristics of the study sites. A further
study could test the benefit of integrating other drivers such
as the often discussed influence of leaf nitrogen concentra-
tions (Sinclair and Horie, 1989; Dewar, 1996; Kergoat et al.,
2008) as intrinsic variable, the saturating behaviour ofε for
high PAR values (Ruimy et al., 1995; Turner et al., 2003;
Lagergren et al., 2005; Hilker et al., 2008) or the ratio of dif-
fuse to total PAR as a proxy for cloudiness (Schwalm et al.,
2006; Jenkins et al., 2007).

6 Conclusions

A parsimonious light use efficiency model has been set up
on the basis of findings from state dependent parameter es-
timations. It follows the assumption that the seasonal be-
haviour of canopies varies between vegetation classes and
its environmental conditions and the influence of explain-
ing variables differs. It is hence assumed that no universal
parameter set explaining the variation of CO2 uptake of all
vegetation types in every climate class exists. The derived
model is driven by incoming photosynthetically active ra-
diation, its fraction absorbed by vegetation, the temperature
and a moisture availability measure such as the evaporative
fraction, the antecedent precipitation index, vapour pressure
deficit or the soil moisture. Despite its simplicity it seems to
capture a major proportion of the day-to-day variations in the
gross CO2 uptake at 44 FLUXNET sites with largely well
defined parameters. Obviously, due to its empirical nature
the parameter sets will get more robust, the longer available
time series are. The best agreement between model and ob-
servations are obtained using the evaporative fraction since
this variable appears to incorporate more information than
purely water availability. The proposed model uses variables
which can be derived by remote sensing or taken from re-
analysis databases like ERA-Interim from ECMWF or data
from the NASA Data Assimilation Office (DAO). Addition-
ally, the model parameters can be related to the specific en-
vironmental conditions which lead us to the conclusion that
the model is suitable as basis for regionalization strategies to
perform the step from the point to the area.
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